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A new method using a matched asymptotic expansions technique is presented 
for obtaining the Stokes flow solution for a rigid sphere of radius a moving 
uniformly in a direction parallel to a fixed infinite plane wall when the minimum 
clearance ea between the sphere and the plane is very much less than a. An 
‘inner ’ solution is constructed valid for the region in the neighbourhood of the 
nearest points of the sphere and the plane where the velocity gradients and 
pressure are large; in this region the leading term of the asymptotic expansion of 
the solution satisfies the equations of lubrication theory. A matching ‘outer’ 
solution is constructed which is valid in the remainder of the fluid where velocity 
gradients are moderate but it is possible to assume that e = 0. The forces and 
couples acting on the sphere and the plane are shown to be of the form (a, + ale) 
log 8 +Po + O(e) where a,, 0 1 ~  and Po are constants which have been determined 
explicitly . 

1. Introduction 
The problem of the slow motion of two rigid spheres through a viscous fluid 

has been of interest for many years, because of its importance to the flow of 
suspensions and the theory of sedimentation. The earliest attack on it was by 
Smoluchowski (1911) who considered the flow properties when the spheres are 
far apart by an iteration procedure, in which the spheres were treated separately 
and alternately. His method was afterwards extended by Faxen (1927), Burgers 
(1941), Kynch (1959) and others. A more satisfactory approach in the special 
case of two spheres in motion along their common diameter only, so that the 
flow is axi-symmetrical, was developed by Stimson & Jeffrey (1926) using bipolar 
co-ordinates. They were able to obtain the solution as a series, which converges 
rapidly except when the spheres are almost in contact. An account of this work 
has been given by Happel & Brenner (1965). Recently Dean & O’Neill(l963) and 
O’Neill(1964a, b )  have extended the use of bipolar co-ordinates to asymmetrical 
problems such as rotating spheres and motion at right angles to their common 
diameter. Again the solution is expressed as a series, but now the coefficients of 
the various terms cannot be determined except as the solution of a set of difference 
equations. However, these equations can easily be programmed for a high-speed 
computer. O’Neill (1964a) has given the principal properties of the flow in the 
special case when one of the spheres degenerates into a plane in an accurate 
tabular form, even when the distance between the sphere and the plane is small. 
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Other cases have been studied by Majumdar (1965). In  principle therefore it may 
now be claimed that the problem of the two spheres moving slowly through a 
viscous medium is solved, apart from certain limiting situations when the series 
obtained either fail to converge or converge too slowly for numerical convenience. 
The aim of the present paper is to complement the work of Dean & O’Neill by 
describing a method especially suitable for these limiting cases and to apply it 
to perhaps the most important of them, when the sphere is very close to a fixed 
plane ( E  < 1) and moving parallel to it as shown in figure 1. 

0 

FIGURE 1. 

ox 

This flow problem is also of interest in another connexion. The theory of lubrica- 
tion is extremely important for engineering design, and although it has been 
extensively developed for many years (see Pinkus & Sternlicht 1961 and Gross 
1962 for an account of the present state of the theory) it suffers from a number 
of drawbacks. 

First, it  is difficult to perform experiments which would adequately test the 
mathematical predictions, partly because of problems of design and partly be- 
cause there are no lubricants whose viscosity is independent of temperature, 
pressure and rate of shear. Secondly, the theory has developed on an ad hoc 
basis; a number of assumptions being made without proper discussion of their 
range of validity and systematic attempts to embed the theory in a rational 
approximation scheme for the solution of the Navier-Stokes equations are only 
now beginning to be undertaken (Langlois 1964; Thompson 1964). Consequently 
it is not easy to make quantitative assessments of the effects of such phenomena 
as the compressibility, inertia and non-constant viscosity of the fluid and the 
non-rigidity of the boundaries. Furthermore, in certain types of problem, such 
as the partially filled bearing, what is known about the actual flow properties 
makes one somewhat sceptical of the suficiency of lubrication theory. 
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In the face of all these difficulties in the theory, the contribution of this paper 
is the modest one of assessing its accuracy when applied to a fluid motion in 
which there is also a large region in which the flow is weakly sheared. Lubrication 
theory gives a valid first approximation to the flow in the neighbourhood of 0 
in figure 1 provided that the Rqynolds number based on minimum clearance 
between the sphere and plane is small and B < 1.  Our solution enables us to embed 
this theory into an exact solution of the Stokes equations for creeping flow, and 
hence we can make an estimate of the accuracy of the theory with regard to local 
and overall properties of the flow. 

The method of solution we adopt is to divide the flow into two parts. First, 
there is an inner region, in the neighbourhood of 0 in which the velocity gradients 
and the pressure are large. In  this region the leading term of the asymptotic 
expansion of the solution of the Stokes equations satisfies the equations of lubrica- 
tion theory and successive terms can be obtained in a straight-forward way. 
Secondly, there is an outer region consisting of the remainder of fluid in which 
velocity gradients are moderate but it is possible to assume that B = 0. The co- 
ordinate system may then be inverted about 0 reducing the problem to the flow 
between two parallel planes with singularities at infinity (i.e. at the inner edge of 
the outer region, near 0). These singularities lead to a perfect match with the 
structure of the inner solution leaving the neighbourhood of 0. In this way a 
completely consistent solution is obtained when B < 1 which may, if desired, be 
made the first term in an asymptotic solution of the Stokes equations. 

2. The statement of the problem 
It is supposed that the fluid motion is generated by the sphere, which is rigid 

and has radius a, moving with uniform velocity (@, 0, 0) referred to a system of 
Cartesian co-ordinates (ax, ay, az) in which the plane is z = 0 and, instantane- 
ously, the co-ordinates of its centre are (0, 0, a(1 +e)). Then the minimum clear- 
ance between the sphere and the plane is ea. It is further supposed that the fluid 
is incompressible, has a constant density p and viscosity ,u, and that the Reynolds 
number @ap/,u is sufficiently small to permit the neglect of the inertia terms in 
the Navier-Stokes equations. The equations governing the fluid motion are 

(1) 
therefore 

where p is the pressure and V the velocity. The boundary conditions are that 
V -+ 0 at infinity since the fluid is supposed at rest there, and V = 0 on the plane. 
Further a t  any point of the sphere the components (u, v, w) of V in cylindrical 
polar co-ordinates (ar, 8, az), in which the origin is that point of plane nearest 
the sphere, are given by 

V p  = pV2V, divV = 0, 

u = @cos6, v = -%sine, w = 0. (2) 

The method of solution of this problem is to divide the flow region into an 
inner region in which r ,  z are both small and flow properties are similar to those 
in lubrication problems, and an outer region comprising the rest of the flow in 
which essentially e may be set equal to zero and the flow properties are obtained 
by means of Fourier-Bessel transforms. We first consider the inner region. 

46-2 
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3. The inner region 

‘v sin 0, W cos O),  equations (2) are satisfied if 
Writing ap = p42PcosO and the cylindrical components of V as (Ucose ,  

and 

aPpr = L;U-z (U+ V)/r2, 
- P/r = LiV - 2( U +  V) / r2 ,  
a q a z  = L; w, 

au u+v aw 
az --+----- 

ar r +- = 0 ,  

the operator LL being defined by 

The clearance a8 between the sphere and the plane, expressed as a function of r ,  
is given by 

Now Sand therefore z are O(s), which together with (8) suggests the introduction 
of new variables, R, 2, defined by 

r = e * R ,  z = &  

S =  l+s-( l -rZ)*.  (8) 

Thus (8) now gives 6 = eH+4s2R4+...,  (9) 
where H = 1 + +R2. 

The boundary conditions imply that U and V are O(1). Consequently (6) 
implies that W = O ( d )  and (4) implies that P = O(e-*), which suggests that we 
look for solutions for P,  U ,  V and W of the form 

P(r,  z )  = s-3 P,(R, 2) + s-gP,(R, 2) + .. ., 
U(r ,  z)  = U,(R, 2) + eUl(R, 2) + . .., 
V(r,  z )  = V,(R, Z) + s q ( R ,  2) + ..., 
W(r ,  z )  = e* W,(R, 2) + e f K ( R , Z )  + .... 

(10) 

Substitution of (8) and (10) into (3), (a), (5) and (6) yields the following set of 
equations for U,, V,, W, and Po 

and 

and the following set of equations for U,, V,, W, and P, 

and au, ul+q awl 
aR R az -+-+- = 0. 
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Similar sets of equations could be written down for q, q, TI$ and Pi (i > 1). 
The boundary conditions (2) are equivalent to 

U,(R,O) = K(R,O) = W,(R,O) = 0 (i 2 0 )  
and 

from which we may deduce that 

(19) 

and 8U1(R, H )  = - R4 U&(R, H ) ,  (20) 

8q(R, H )  = - R4&z(R, H ) ,  (21) 

8W,(R, H )  = - R4E&(R, H ) ,  (22) 

the suffix Z indicating differentiation with respect to 2. Expressions for U,(R, H ) ,  
K(R, H )  and W,(R, H )  (i > 1) could also be written down on equating the co- 
efficients of appropriate powers of e higher than the first in equations (18). 

Equations ( l l ) ,  (12), (17) with i = 0 together with (19) are of the form-as 
might be expected-which occur in classical lubrication theory and they are 
solved in the usual manner of that theory. The appropriate Reynolds equation 
for this set of equations is found to be 

(23) 

/ 
U,(R, H )  = - &(R, H )  = 1, K(R, H )  = 0, 

R2 P," + (R  + 3R3/H) Ph - Po = - 6R3/H3. 

A particular integral of (23) is 
Po = 6R/5H2, 

and (24) gives the unique solution of (23) which decays to zero at R = 03. This is 
apparent since the complementary function solutions for Po are - R and N R-1 
for small values of R, and N R410-3 and - R--(410+3) for large values of R. The 
solution - R-l for small R we exclude since Po must be bounded at R = 0,  and 
furthermore i t  is impossible to construct a complementary function f which 
decays to zero a t  R = 00 and is - R for small values of R. This follows from the 
fact that iff - + R for small R and f decays to zero at R = 00, it  possesses at least 
one maximum value. At the smallest value of R for which f is a maximum, 
f > 0, f' = 0 and f " < 0, but from the differential equation satisfied by f, namely 
(23) with the right-hand side replaced by zero, f " > 0 when f' = 0 and f > 0, 
which is a contradiction. We may similarly prove that there is no solution f N - R 
for small R which decays to zero at R = 03. In  addition, if Po - R410-3 as R + 03, 

p N r410-3/~b'10 when r $ €4. Such a property of p can only be matched with an 
outer solution of the kind we envisage (in which a/ar, a/az - 1) only if p - e-WO 
over the whole of the outer region which from physical considerations is absurd. 
This possibility is therefore excluded and we conclude that (24) is the only 
acceptable solution of (23) .  Below it will be shown that using (24), a completely 
consistent match can be obtained with the outer solution. 
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From ( 1  l ) ,  ( 1 2 ) ,  ( 1  7 ) ,  (19) and ( 2 4 )  it  can be shown that 

6-9R2  2+7R2 
Z2+-  2, u, = ~ 

1 0 ~ 3  5H2 

8R - 2R3 2R3 - 7R 22. 

w, = 5H4 Z 3 f  5H3 ( 2 7 )  

There is no difficulty, in principle, which prevents us from proceeding to 
calculate U,, V,, W,, etc. Later in the paper ( 5  8) we shall in fact obtain some of the 
salient properties of these functions but now we shall consider the contribution 
from the flow in the inner region to the force and couple acting on the plane and 
sphere. 

4. Contributions to the force and couple acting on the plane and the 

The contributions (Fi, e, @) to  the Cartesian components of the force 
exerted by the fluid on the fixed plane 2 = 0 which result from the effect of the 
inner solution are, in view of the boundary conditions on the plane, given by 

sphere from terms of the inner solution 

-. - 
F: = S I T , U @ U ~ ,  Fj = F: = 0, 

where 6 p  = I0 R, (--El au RdR; az az z=o 

R, being a value of R chosen so that the inner solution is valid for 0 < R < R,. 
The contributionft t o p  made by the leading terms in the solution is therefore 
given by 

6f: = 1, RO (--%I avo RdR, az az z=o 

which on evaluation using (25) and (26) gives 

f; = ~ ~ l O g ( l + ~ R ~ ) - ~ + 9 / ( 2 + R ~ ) .  (29 )  

The contributions (F;, F;, F:) to the Cartesian components of the force exerted 
on the sphere due to the inner solution are 

where 
F; = - S T , U @ U ~ ,  F i  = Fi = 0, 

the angle n- - x being that between the radius vector to a surface element of the 
sphere from its centre and the z-axis, and xo is chosen so that the inner solution 
is valid for 0 < x < x,. The contribution ft to f i  from the leading terms of the 
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inner solution is found on using (10) and noting that x = E*R + O(&) for small 
values of x. The expression for f,$ is given by 

which on evaluation using (24), (25) and (26) gives 

f$ = &log( l+yq) .  (32) 

Expressions for the couples exerted by the fluid on the plane and the sphere 
may also be determined, and when moments of the surface stresses are taken 
about the centre of the sphere, it is found that the contributions (G:, q, @) 
to the components of the couple acting on the plane which result from the inner 

solution are - - 
@ = - 8np@a2gi, Gk = GZ = 0, 

where 8gi = - E+J: P(R, O)R2dR + 6( 1 + e)p. (33) 

The contribution & to gi due to  the leading terms in the inner solution is found 
to be 

g; = j&lOg(l+*R;). (34) 

The corresponding contributions (G:, G i ,  Gt) to the couple acting on the sphere 
when moments are again taken about the centre are 

where 
G: = 8np@a2gi, G: = Gt = 0, 

x, xo being as defined above. The contribution g; to gi which is made by the lead- 
ing terms in the inner solution is seen to be 

8g; = j0 z0 (---%) avo PRdR, az az Z=R 

which on evaluation gives 

g; = &log (1 + *Ri) + & - */(2 + Ri). (36) 

5. The outer region 
The equations governing the flow of fluid which is not in the neighbourhood of 

the nearest points of the sphere and the plane are again given by (1). These 
equations are satisfied when the pressure p and the cylindrical components 
(u, v, w) of V are of the form 

up = 2p@Qc0~8, u = @[T&+~($+x)]cos~,  (37) 

(38) v = +@[x - $1 sin 8, w = @[x& + $1 cos 8, 



712 M .  E.  O'Neill and K .  Stewartson 

where r ,  z are cylindrical co-ordinates which are dimensionless relative to the 
radius of the sphere, and I+?, x,  $ and Q are functions of r ,  z only, satisfying 

Li$ = L ~ x  = L:$ = L:Q = 0, (39) 

the operators being defined by (7).  

be shown to be satisfied when 
The equation of continuity after substitution of u, v, w from (37) and (38) can 

The boundary conditions on the plane and the sphere require that 

$+zQ = 0, x+rQ = 0, $+rQ = 0, (41, 42, 43) 

on the plane and that 

$+zQ = 0, x+rQ = 0, I+?+rQ = 2, (44, 45, 46) 
on the sphere. 

A fist approximation to the solution for the flow in the region not in the 
neighbourhood of the nearest points of the sphere and plane would be its limiting 
form when E + O  and the sphere is in contact with the plane at the origin. This 
limiting form is constructed by solving the problem with E = 0 excluding the 
origin from the flow region since the boundary conditions (43) and (46) cannot 
both be satisfied there. The fact that the component w of velocity is zero on the 
axis r = 0 (0 < z < E )  when E =+ 0 and that the boundary values of w are both 
zero when E = 0 suggests that w remains bounded as E J O .  

In  order to facilitate the solution of the problem when E = 0 we transform the 
co-ordinates r ,  z to co-ordinates 6, 7 by the relations 

r = 2q/(t2+q2), z = 26 / (g2+q2) .  (47) 

The plane is now given by 6 = 0, the sphere by 6 = 1, the origin r = z = 0 by 
7 = co and infinity by 6 = 7 = 0. It may be shown that a solution of the equation 
Lg f = 0 which is non-singular at 6 = 7 = 0 is given by 

f = (t2 + q 2 ) t / o m { d ( s )  sinh $6 + B ( s )  cosh s t }  J,(sq)ds, 

whered(s) and B ( s )  are functions of s such that the integral converges. For 
example, the integral converges if 

lom ( d ( s )  sinh s + 9 ( s )  cosh s} s t d s  converges. 

We shall assume that there is a region of the space occupied by the fluid in 
which both the inner and the outer solutions are valid so that both solutions 
match in this region. Such an assumption implies that, in this region, 

d R  N 2/7, 

for R and q will be large. Furthermore, in this region 

p 24~-$R-$ ,., 3 3. 
5 6 7  
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Consequently, for large values of 7, 

ZQ N %%- 

9 -  -%-Y (49) 

It is therefore apparent that w cannot be non-singular at the origin unless 

for large values of 7, and in view of (39), (41) and (48) a suitable form for 4 is 
given by 

r m  

where A(s)  N - 3/5s2 for small s and exponentially small for large s. 
The boundary condition (41) has been satisfied in constructing # given by 

(50) but a further relation between Q and 4 on 6 = 0 may be obtained from the 
equation of continuity which requires 8wla.z = 0 on the plane. On substituting 
for w from (38) it is seen that this relation is equivalent to 

On substitution of # from (50) the right-hand side of this equation becomes 

- + ~ 3 / ~ s A J l ( s 7 ) d s - .  A773 

for large 7. It is impossible to construct a solution Q of the type (48) with m = 1 
with a convergent integral and which N 3q3/10 for large values of 7. Therefore 
we write 

where L:Qo = L;Ql = 0 and Ql(O,y) -. r3 for large values of 7. A suitable form 
for Q1 is found to be 

Q = Qo+i%Qi ,  (53) 

Q1 = v ( F  + r2)  + (C2 + T ~ ) ’ / ~  W, 8) J1(s7) ds, (54) 

where K(<, s) = e-”6[t2/s+ 36/s2] - [3e-Ssinhs6]/s3. (55 )  

0 

The boundary condition (51) now gives 

- - - g73/0ms[A + 3/5s2]J1(sy)ds, 

which on integrating by parts and use of the recurrence formulae for Bessel 
functions may be shown to reduce to 

Qo(0,7) = +7/m[sA”+A’-A/s+9/5s3]Jl(s4)ds, 0 

the accent denoting differentiation with respect to s. The integral converges 
subject to the assumption we have made concerning the behaviour of A for large 
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values of s. Consequently, a possible form for the function Q0(& q) is given by 

Q0 = 4(E2 + q2)Bsm [B cosh s[ + C sinh 861 Jl(sq) ds, (56) 

where B = sA” +A’ - A / s  + 9/5s3, (57) 

0 

and C is a function of s for which the integral is convergent. The function C is 
expressed in terms of A by means of the boundary condition (44) which implies 
that 

som[B cosh s + C sinh s] Jl(sq) ds + V,( 1, s) Jl(sq) ds 

= -(1+~z)(faAsinhsJl(sq)ds+fq(l+q2)-~). 0 (58)  

Sum 
On using the relation 

r m  

we establish, after integration of the right-hand side of equation (58) by parts 
and substituting for B from (57), that (58) is satisfied when 

C = [ sA”-A’]K+z[e-5-  l]/s3, (60) 

where K = 8-l- coth 8. 

It is easy to show that C = 0(r2) for small values of s, hence justifying our 
construction for Q0 in the form given by (56). 

The boundary condition (42) gives 

The right-hand side N - 3q2/5 for large values of q, and therefore since we can- 
not construct a solution x(E, q)  of the form (48) with m = 2, with a convergent 
integral and which has the required asymptotic behaviour for large values of q, 
we write 

where Lix0 = Lgxl = 0. and xl(O, 7) N - q2 for large q. A suitable form for x1 is 
found to be 

x = X O  + b ! l 7  

x1 = -q2+  (~‘+q’)t/om & ( [ , s ) J 2 ( s q ) d s 7  (62) 

where &([, s) = e-s%2 + 36/81. (63) 

The boundary condition (61) now gives 

which on integration by parts reduces to 
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The integral on the right-hand side of this equation is convergent. Therefore in 
view of (48) we may construct the function xo as an integral of the form 

xo = (52+qz)&/om [HcoshsE+Gsinh s t ] J z ( q ) d s ,  

where P = A - sA’ + 9/5s2, (65) 

provided we can show that G is a function ofs for which the integral is convergent. 
The function G is expressed in terms of A by means of the boundary condition 
(45) which implies that 

Jom [Fcoshs+Gsinhs]J2(sq)ds+~~ 3 “  5(l,s)J2(sq)ds 
0 

which, on integrating the right-hand side of (66) and using (65), shows that (66) 
is satisfied when 

G = [2A - sA’] K - 9/5s2. (67) 

G can be shown to be O(+) for small values of s, so that (64) is a proper repre- 
sentation for xo. 

The determination of a suitable form for the function $ is carried through in a 
similar manner, as for Q and x. We write 

+ = @o+ * @ 1 7  

where L: $o = L;lcrl = 0 and +hl(O, 7) N - q2 for large 7. A suitable form for 
is found to be 

where 

The form for $o is found to be 

&& s) = - e-st[E2 + E/s] + [e+ sinh sLJsz. (69) 

= (tZ + q2)*J -- [D cosh sE + E sinh sc] Jo(sq) ds, 
0 

where, in order to satisfy the boundary conditions (43) and (46), 

D = sA’ + A  - 3/5s2 

E = sA’K- t[e-s- 1]/s2 + 2(coth s - 1). 

(71) 

and ( 7 2 )  

A consideration of the asymptotic behaviour of D and E for small values of 5, 
together with the assumed asymptotic behaviour of A for large values of s 
justifies the construction of $o in the form given by (70). 



716 M .  E .  O’Neill and K .  Stewartson 

6. The equation of continuity 

then each of the functions 
It can be easily verified that when Q ,  $, x and g5 satisfy the equations (39 ) ,  

is a solution of the equation L2f = 0. It can further be shown that when Q,  $, x 
and $I are constructed in the manner described in the preceding section, 

= i((e+7z)+l“ {(3B+sB’) coshsg+ (3C+sC’+9e-S/5s2)sinhs~;)J,(sq)ds, 
0 

= - (12 + qz)”S a( ($A” +A’ - A/s + &D“+ 9/5s3) cosh s t  
0 

&~E”-9 /5s3+8e+  

= &(t2 + ~ / ~ ) ~ / ~ { ( d ” ’  + 4F’ + ZP/s) coshst 

+ ( s G  + 4G’ + 2G/s) sinh s[}Jl(sy) ds.  (76)  

From (74 )  to (76 )  we observe that the equation of continuity (40) is of the form 

( < z + ~ z ) ) ” / “  (h(s) coshs<+p(s) sinhst}J,(sy)ds = 0, 
0 

(77 )  

where hfs) involves only the functions A ,  B, D and F and p(s)  involves only the 
functions C, E and G .  If B, D and F are expressed in terms of A by the relations 
(57 ) ,  (65 )  and (71 )  we find that h(s)  e 0; this of course must be so since the 
equation of continuity when 6 = 0 has already been used in the derivation of the 
relations. For the equation of continuity to be satisfied at all points of the fluid 
with the exception of the origin, it  therefore follows that p(s)  = 0. Consequently 
on expressing C, E and G in terms of A by the relations (60 ) ,  (67)  and (72)  it 
follows that 

s3K’A’’ + sA’[s2K” +- 3sK’ + ZK] - A [s2K” + 4sK’ + 2K] + s2X” = 0, (78) 

where K = 8-l- coths and X = coths- 1. The solution to (78) which we seek 
must be N - 3/5s2 for small values of s and must decay to zero exponentially for 
large values of s. It has not been possible to obtain this solution in closed form. 
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It may be easily shown that if A, and A ,  are the particular integral and com- 
plementary function respectively of (78) for small values of s, 

A, = -3/5s2+O(1), 

A,, = ~ “ “ - 2 { 1 +  O(s2)); 

the other complementary function solution which N ~-(dlO+~) for small values of 
s we reject in view of the prescribed asymptotic behaviour of the required solution 
for small s. 

It may further be shown that if A,, A ,  and A ,  are the particular integral and 
complementary function solutions respectively of (78) for large values of s, then 

A ,  = - 2s2e-25-0(s4e-45), A ,  = 1 -  2s+O(~e-~5), A,  = e-25+0(s2e45). 

I n  view of the singular behaviour of A,, A;, A ;  and A:, at s = 0, in order to per- 
form the numerical integration of (78) it  is necessary to have accurate expressions 
for A, and A I I ;  if one aims at obtaining A correct to five decimal places say, it is 
essential to know the expansion of A, as far as the term in s4 and A,, as far as 
the term in d l O *  a t  least. The equation (78) was integrated numerically twice 
for values of s up to 5.6; the first time using the expansion of A, for the starting 
values and the second time using the expansion of A,, for the starting values and 
with X” set at zero. The solution for the present problem was then found by 
choosing that linear combination of the two numerical solutions which 

- 282e--25+ o(e-25) 

for large values of s. 

7. Contributions to the force and couple acting on the plane and 

The contributions (Fz, F;, F:) to the Cartesian components of the force acting 
on that part of the fixed plane 5 = 0 for which 0 < 7 < qo which result from the 
outer solution are given by 

sphere due to the outer solution 

- 
F: = 6np@ap, F; = F2 = 0, 

where (79) 

The contribution fi to fO from the solution which we have constructed in the 
previous section is therefore given by 

3 ,  = ~ ~ [ ~ o m [ s 2 A ’ f  -sA’]KJ,(sr)ds r - l d y  I +lr(jm [s2A’K+2s(coths- l ) ]J , (sp)ds)d7;  (80) 
0 

K is as defined for (78). Consideration of A and its derivatives for small values of 
s shows that 

[s2A” - sA’] = 8/5s + O(s3), 

[s2A’K + 2s (coth s - I)] = 8/5 + 0 ( s 2 ) .  



718 M .  E.  O’NeilE and K. Stewartson 

It is therefore clear that if the order of integration in the double integrals of (80) 
is reversed and yo allowed to approach infinity, the integrals will no longer con- 
verge. However if we write 

+I:( /om(s2A’R+2s (coths- 1)-  Xe-Z5/5)J,(sy)rZs]d~ 

the order of integration in the f i s t  two of the double integrals of ( 8 1 )  may now 
be reversed when 7, -+ 00. Consequently 

f: = ~/om{s~A”K+2(coths- 1 ) -  16e-25/5s}ds 

++!log7o-i%+Pl(ro), (82) 

where pl(yo)+O as y,-+00. The total force acting on the plane may now be 
obtained by combining the contributions due to both the inner and outer solu- 
tions as given by (29) and (82), provided that we identify the values of r cor- 
responding to yo and R, and set 

Royo = Z / E * .  ( 82) 

It is tacitly assumed here that the inner and outer solutions have a region of 
overlap in which 1 -g R -g €4 and 1 4 y -g E-*. The first-order approximation, 
neglecting those terms which tend to zero with 8,  then gives 

- -  
Fz = 67r,u@af0, F, = -F”, = 0, 

wheref, =fi+fi. On using (29), (82) and (83), we obtain 

f, = &log(2/e)-+%++ {sZA”K+2 (coths- 1 ) -  16e-25/5s}ds+p1(y,)+p,(R,),  
l o m  

where pl(yo) -+ 0 as yo -+ 00 and p2(RO) + 0 as R, -+ 00. Hence proceeding to these 
limits, we have 

fo = &log(2/s)-+%+- (s2A”K+2(coths- 1 ) -  16e-25/5s}ds. (84) : /om 

The discussion of the force on the sphere and of the couples acting on both the 
sphere and the plane follows similar lines. We shall therefore not give the details 
but content ourselves with quoting the principal results. The contributions 
(FS, FE, J’:) to the Cartesian components of the force acting on the sphere ( = 1 
due to the outer solution are 

where 
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ro being defined as before. The leading term f 8 of f O  is given by 

j’: = +Q log ro - +$ + - {s2A“K + 2 (coth s - 1) - 16e-28/5s}ds + pl(ro), (86) : sum 
where pl(yo) + 0 as yo+ 00. 

the fluid to a first approximation. This is given by 
Combining (86) with (32) we obtain the total force exerted on the sphere by 

Fx = 67r,u@af0, F, = Fz = 0, (87) 

where fo = s l o g  (2/s) -%+- {s2A”K+2(coths- 1)- 16e-28/5s}ds. 

It is noted that fo = jo so that the forces which act on the sphere and plane are 
equal and opposite in agreement with a more general result of O’Neill(1964a). 

On takmg moments about the centre of the sphere, the Cartesian components 
(a:, Gi, a:) of the couple acting on the plane due to the fluid motion and resulting 
from the outer solution are given by 

: IOW 

= 0, Gi  = - 87rp@a2#’, 8: = 0, (88) 

where 

The leading term S,” of So is 

where p2(ro) + 0 as ro + 00. Combining (89) with (34), we find that the leading 
term contribution to the couple on the plane from both the inner and the outer 
solutions has Cartesian components 

- - - 
G, = 0, G, = - 87r,u92a2~o, Gz = 0, ( 90) 

where go = Q + &log (21s) + - (4s.4 + s2A”K + 2 (coth s - 1) - 4e-&/5s} ds. 
:!Ow 

Finally, again taking moments about the centre of the sphere the leading term 
in the couple exerted by the fluid on the sphere due to the combined effects of the 
inner and outer solutions has Cartesian components 

Gx = 0, G, = 87r,u@a2go, G, = 0, 
where 

go = Q + &log (2/e) 

+ (A + $) [2s cosech2 s - (coth s - 1) (1 + 2s + s2 cosech2 s)] 

I) (coths-1) ds. 



720 M .  E.  O’Neill and K .  Stewartson 

8. The contributions O(E log E) to the forces and couples 
In  deriving the formulae (84), (87), (90) and (91) for the forces and couples 

acting on the sphere and the plane, we neglected terms O(e). It is evident also 
that if we now proceeded to determine the next term in the inner solution expan- 
sions (10) of the velocities and pressure and the corresponding outer solution, we 
would be able to obtain correction terms up to O(s) to the expressions for the 
forces and couples. As with the leading terms, i t  is to be expected that terms 
O(e1oge) will appear in conjunction with terms O(e). In  this section we shall 
determine the terms O(E log e) explicitly for which it is only necessary to examine 
the structure of Ul and V, as R-too, whereas to determine the terms O(E) we need 
to know the structure of Ul and V, for all R. 

The reason is as follows: from (28) it  is clear that the contributionf: t o p ,  the 
reduced force on the plane, from the second-order solution is 

Now it turns out, in a manner to be demonstrated below, that when R is large, 

Hence when R, is large, 

where Af is a constant which depends on the overall properties of Ul and V,. If 
we now relate R, to the corresponding variable ro = 27,/(1 +7:) of the outer 
solution by means of the formula ro = dR,, it  follows that 

f! = Q{~allr~+~a12slogs+a12slogr,+eAf+ O(e/rE)}, (93) 

where R, is large but ro is small. Now let us consider the outer solution. On com- 
puting the force on the outer part of the plane for which r 3 ro and adding to 
(93), we can obtain the total force on the plane to order E. Such an expression 
must, however, be independent of r, for the choice of ro is to some extent arbitrary 
and hence the terms which depend on ro must cancel when (93) is added to the 
contribution from the outer solution. Of these terms, the first, &ul&r& being in- 
dependent of e must be cancelled by part off!. It is inferred thatf! contains a 
term - &al1r& The term Qu12e log ro is of order E and so must be cancelled by the 
principal part offi. It is inferred that 

fi = -Qeal2logr0+QeAO,+O(1), 

where ro is small and where AO, is a constant depending on the overall properties 
of the terms O(E)  in the outer solution. Hence 

fl = ~u12€log€+Qs(A~+A0,).  

Similar remarks apply to the force on the sphere and to the couples. As we have 
already remarked, in order to determine a12 it is only necessary to examine the 
limiting structure of Ul and V, as R -t 00. This we do in the following way. 
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which together with (25), (26) and (27) on substitution into (13) and (14) gives, 
for large values of R, 

192 16,128 1 32 3072 1 
~ = P’(R)+ +o - z2+ -R4+--+o a 2  u, 
a22 [R6 5 R8 (;lo)] [ 5 R6 

The boundary conditions which must be satisfied by U,, V, and W, are, from (17) 
with i = 1, (20), (21) and (22), 

U,(R, 0) = K(R, 0) = W,(R, 0) = 0, 

and for large values of R, 

U,(R,H) = [ Q -  (4/R2)]H+0(1/R2), 

V,(R, H) = [+ - ( 16/5R2)] H + O( 1/R2), 

Wl(R,H) = [(8/5R3)-(112/5R5)] H3+0(1/R). (97) 

After integrating (95) and (96) twice with respect to 2 and using (17) and (97), 
one obtains 

16 1344 u,(R, z) = ~ F ’ ( R )  ( 2 2 -  Z H )  + 
16 512 [ 3R4 5R6 

+ --+-+o 

V,(R,Z) = - ~ F ~ ) ( Z 2 - Z H ) +  

(99) 

2 R  

+ [ & + 0 ( & ) ] ( 2 3 - 2 ~ 2 ) +  

for large values of R and from (16), 

On putting 2 = H in equation (100) after substituting U, and V, from (98) and 
(99), the following second-order differential equation for F(R) is obtained 

The left-hand side of equation (101) is exact; it  therefore follows that the com- 
plementary function solutions of the differential equation which is satisfied by 
F for arbitrary values of R are the complementary function solutions of (23). 
Therefore by the same reasoning which we employed to establish that (24) was 
the solution of (23) for Po, we assert that the complementary function solutions 
of (101) may be rejected and consequently that, for large values of R, 

12 1 712 1 
1 5 R  125R3 (i5) 

F(R)=--+--+O - . 
46 Fluid Mech. 27 
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Hence on substituting from (102) into (98) and (99) and then into (92), 

and we conclude that 

M .  E .  O'Neill and K. Stewartson 

2 5 8  
a12 = i s 9  

p = p + p o  = fo - &$ slog E + O(s). (103) 

In  a similar way it may be shown that the reduced couple on the plane is 

g = # + S O  = go - - +& E log E + O(E) , 

f =P+fO= f O - ~ € l O g € + O ( € ) ,  

the reduced force on the sphere is 

and the reduced couple on the sphere is 

9. Results of the numerical work. 
The numerical values of the solution A(s )  of the differential equation (78) 

which N - 3/5s2 + O( 1)  for small values of s and N - 2s2e-2s+ O(epzS) for large 
values of s were tabulated to an accuracy of five decimal places in the range 

0-05(0.05)2*0(0.2)5.6. 

The integrals which appear in the expressions forfo, fo, go and 
evaluated, as a result of which, we may write (103)-( 106) as 

- 

I f = f =  [ ~ ~ + ~ ~ ~ ~ ] 1 0 g ( 2 / € ) + 0 . 5 8 4 6 1 + O ( ~ ) ,  

g = [&+2<+] log ( 2 / e )  - 0.26221 + O ( S ) ,  

g = [ & + & ~ ~ ] l o g ( 2 / ~ ) - 0 * 2 6 2 2 7 + 0 ( ~ ) .  

go were then 

(107) 

The values off, f ,  S and g, ignoring terms of O(e) and higher, are g ven in table 1 
for a range of small values of s and the corresponding values off and g which 
were obtained by O'Neill (1964a) which in the notation of that paper are 
written as P* and C* respectively, are given here for comparison. A satisfyingly 
close agreement is found between the results of the approximate theory which 
we havp dpvc.lnnd in th is  nanpr and thnse nrediptorl h~7  fi'Nc.ill'a o r a p t  th~nrxr 

€ f F* B 9 c f*  

0.00020 5.4971 5.4973 0.65914 0.65908 0.65912 
0.00045 5.0649 5.0651 0.57837 0.57831 0.57834 
0.00080 4.7584 4.7587 0.52126 0.52120 0.52120 
0-00125 4.5208 4.5123 0.47713 0-47707 0.47706 
0.00180 4.3269 4.3275 0.44124 0.44118 0.44116 
0.00245 4.1631 4.1639 0.41106 0.41100 0.41096 
0-00320 4.0213 4.0223 0-38506 0.38500 0-38496 
0-00405 3.8964 3.8976 0.36226 0.36220 0.36214 
0.00500 3.7847 37863 0-34201 0.34195 0.34187 

TABLE 1 
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An interesting feature of these results is the almost identical values which are 
given for and 9, which leads one to conjecture whether or not the couples acting 
on the sphere and plane as well as the forces are equal and opposite. However 
it may be shown either by considering the asymptotic form of the solution given 
by O’Neill(1964a) for large values of the parameter a: of that paper or by the 
methods of reflexions, that for the problem when B 9 1, 

g N 3 ~ ~ 1 3 2 ,  S - 5 ~ ~ ~ 1 6 4 .  

The expressions which we have obtained for S and g suggest that they are of 
the form 

r m  m 

It is possible that the corresponding coefficients a, are the same for both series 
but the corresponding coefficients Pn are different; this together with the almost 
identical coefficients Po in each series would give very similar values for S and g 
for the very small values of E when the terms O(1og E ) ,  O(e log E )  and O( 1) dominate. 
It is further possible that Po is the same for both expansions, a fact we have not 
been able to establish. 

10. The theory of lubrication 
Although the theory of lubrication has been of great interest for many years 

and has been applied to a large number of separate flow problems, little effort 
has been put into establishing its validity either from an experimental or a theor- 
etical standpoint. In  their discussion of the available experiments on bearings, 
Pinkus & Sternlicht (1961) point out that while there is an abundance of test 
data, significant experiments on bearings are rare. 

One reason lies in the difficulty of constructing and maintaining bearings with 
minute clearances of the necessary accuracy. Another more important reason 
concerns the lubricant viscosity. To quote Pinkus & Sternlicht (p. 426): ‘It is 
almost impossible to vary a parameter during testing without simultaneously 
varying the viscosity field of the lubricant. The only possible escape from this 
difficulty would be to use a fluid whose viscosity is not affected by tempsrature, 
pressure or rate of shear. Such a lubricant, however, does not exist’. The experi- 
ments they report, however, show an encouraging agreement with theory, in that 
part of the flow region where it may be expected to hold, provided neither large 
subatmospheric loops in the pressure nor cavitation occur. From a theoretical 
standpoint too, little has hitherto been achieved towards embedding the theory 
in a theory of hydrodynamics based on the Navier-Stokes equations and in 
assessing the errors made in applying the theory to specific problems. Reference 
may be made to Langlois (1964) and Thompson (1964) for a discussion of the 
present state of these aspects of the theory. 

In  view of these remarks, it  is believed that the flow discussed in this paper is 
of some use for assessing the merits of lubrication theory, for it has in some sense 
one of the very few known exact solutions of the Navier-Stokes equations, in 

46-2 
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which the flow region contains a region to which lubrication theory can be applied. 
Furthermore, the flow is realizable in a laboratory, particularly if use is made of 
the natural extension of this work to the case when the sphere rotates which has 
been carried out recently by M. D. Cooley and one of us (M.E. O W . )  and which 
it is hoped to publish elsewhere. 

We find that in the neighbourhood of 0, the nearest point of the plane to the 
sphere, lubrication theory gives a description of the local flow properties accu- 
rately to O(e)  where E a  is the minimum clearance between the sphere and the 
plane, as indeed would be expected. This theory is, however, of more limited 
validity when it is used to compute the overall forces or couples, because it is 
then only on an equal footing with the theory of weakly-sheared flow past the 
rest of the sphere. The force and couple on the sphere, for instance, predicted by 
lubrication theory, are of the form A log e + B, where A and B are independent of 
E if terms of O(E)  are neglected, and the value of B is uncertain since it depends on 
the limits assigned to the lubrication zone. The actual force and couple are 
A log E + C + O(E log e), where C has been determined explicitly (107) and depends 
substantially on the flow past the rest of the sphere. 

We conclude therefore that while lubrication theory accurately describes local 
flow properties, it does not provide a reliable estimate of overall flow properties, 
particularly forces and couples, if the flow region includes a substantial region of 
weakly sheared flow. Nevertheless, its predictions of the forces and couples in the 
present problem are formally correct in the limit e+ 0. 
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